Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Xu, ${ }^{\text {a, }}{ }^{*} *$ Yin-Xiang Lu, ${ }^{\text {a }}$ Peng Guo, ${ }^{\text {a }}$ Hui Zhou ${ }^{\text {a }}$ and Bi-Jian Lan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China

Correspondence e-mail: wexu@fudan.edu.cn

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.061$
$w R$ factor $=0.156$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis[(4-phenylpiperazin-1-yl)methyl]methane

The title compound, $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{~N}_{8}$, is a symmetric molecule with four chemically identical substituents bonded to a central C atom. In the crystal structure, the 4-phenylpiperazin-1-yl groups exhibit four different conformations, with no obvious pseudosymmetry.

Comment

It has been reported that many molecules can crystallize with $Z^{\prime}>1$, the crystal structures containing several molecules in the asymmetric unit (Brock \& Duncan, 1994; Lehmler et al., 2002; Kuleshova et al., 2003; Bats et al., 2003; Lu et al., 2003). Previous reports indicate that the same molecules can exist in different conformations without obvious pseudosymmetry. Logically the following question may arise: can identical substituents of a molecule exhibit different conformations in the solid state? To answer such a question, we are focusing our work on the structures of molecules containing chemically identical substituents.

(1)

The title compound, (I), is a dendrimer with a central C atom bearing four (4-phenylpiperazin $-1-\mathrm{yl}$)methyl groups. The molecular structure of (I), with the atom-labeling scheme, is shown in Fig. 1. Selected bond and torsion angles are given in Table 1. In the crystal structure, there are some short intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ interactions (see Table 2) and a $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interaction involving $\mathrm{C} 8-\mathrm{H} 8$ and the $\mathrm{C} 40^{\mathrm{i}}-\mathrm{C} 45^{\mathrm{i}}$ ring; the $\mathrm{H} 8 \cdots$ centroid distance is $2.77 \AA$ and the $\mathrm{C} 8-\mathrm{H} 8 \cdots$ centroid angle is 127° [symmetry code: (i) $1-x,-y, 1-z$].

The bond angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1, \mathrm{C} 1-\mathrm{C} 13-\mathrm{N} 3$ and $\mathrm{C} 1-$ C24-N5 are slightly different [115.1 (2), 116.5 (2) and 114.1 (2) ${ }^{\circ}$, respectively], whereas bond angles $\mathrm{C} 1-\mathrm{C} 35-\mathrm{N} 7$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ are the same $\left[115.2(2)\right.$ and $115.1(2)^{\circ}$,

Received 15 January 2004 Accepted 26 January 2004 Online 28 February 2004

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 10% probability level and H atoms are shown as small spheres of arbitrary radii.
respectively]. However, bond angle $\mathrm{C} 37-\mathrm{N} 8-\mathrm{C} 38$ [112.2 (2) ${ }^{\circ}$] is larger than $\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$ [110.8 (2) ${ }^{\circ}$]. This implies that the structural parameters of the four substituents are not strictly equal.

The torsion angles about bonds $\mathrm{C} 2-\mathrm{N} 1, \mathrm{C} 13-\mathrm{N} 3, \mathrm{C} 24-$ N5 and C35-N7 are given in Table 1 and show them to be different. It should be noted that the differences between any two corresponding torsion angles are far larger than their uncertainties. Table 1 also presents some selected torsion angles involving non-bonding atoms. The corresponding torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1 \cdots \mathrm{~N} 2, \mathrm{C} 1-\mathrm{C} 13-\mathrm{N} 3 \cdots \mathrm{~N} 4, \mathrm{C} 1-$ $\mathrm{C} 24-\mathrm{N} 5 \cdots \mathrm{~N} 6$ and $\mathrm{C} 1-\mathrm{C} 35-\mathrm{N} 7 \cdots \mathrm{~N} 8$ are different from each other. Furthermore, the different twists between the phenyl group and the piperazine ring are distinguishable, indicating that the four 4-phenylpiperazin-1-yl groups exist in four different conformations.

This comprehensive analysis suggests that the four chemically identical substituents are different in the solid state. Similar features have also been seen in the $Z^{\prime}=4$ crystal structure of bis(4-phenylpiperazin-1-yl)methane (Lu et al., 2003), where 4-phenylpiperazin-1-yl groups actually exhibit eight different conformations.

Experimental

Compound (I) was synthesized by reacting pentaerythrityl bromide, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 1-phenylpiperazine [which was prepared in situ by a modification of the literature method of Garrard \& Partridge (1993)], in dry DMF at 333 K for 12 h . Work-up gave the desired product (yield 86.5\%), which was purified by recrystallization from DMF to obtain white crystals of (I) (m.p. 447-449 K). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 2.56(s, 8 \mathrm{H}), 2.72(s, 16 \mathrm{H}), 3.17(s, 16 \mathrm{H}), 6.83-7.28(m$, $20 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 49.5,50.7,56.1,62.8,115.7$, 119.4, 129.0, 151.3; IR (KBr) v: 2954, 2794, 1600, 1502, 1457, 1382, 1236, 1010, $925,754,687 \mathrm{~cm}^{-1}$.

Crystal data

$\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{~N}_{8}$	$Z=2$
$M_{r}=713.01$	$D_{x}=1.165 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.712(4) \AA$	Cell parameters from 976
$b=12.708(4) \AA$	reflections
$c=15.354(5) \AA$	$\theta=2.8-22.3^{\circ}$
$\alpha=80.869(4)^{\circ}$	$\mu=0.07 \mathrm{~mm}^{\circ}$
$\beta=68.461(4)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=73.281(4)^{\circ}$	Prism, colourless
$V=2032.2(12) \AA^{\circ}$	$0.15 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8572 measured reflections
7066 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.156$
$S=1.02$
7066 reflections
478 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

C1 $1-\mathrm{C} 2-\mathrm{N} 1$	$115.1(2)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	$110.8(2)$
$\mathrm{C} 1-\mathrm{C} 13-\mathrm{N} 3$	$116.5(2)$	$\mathrm{C} 15-\mathrm{N} 4-\mathrm{C} 16$	$111.0(2)$
$\mathrm{C} 1-\mathrm{C} 24-\mathrm{N} 5$	$114.1(2)$	$\mathrm{C} 26-\mathrm{N} 6-\mathrm{C} 27$	$110.7(2)$
$\mathrm{C} 1-\mathrm{C} 35-\mathrm{N} 7$	$115.2(2)$	$\mathrm{C} 37-\mathrm{N} 8-\mathrm{C} 38$	$112.2(2)$
$\mathrm{C} 1-\mathrm{C} 35-\mathrm{N} 7-\mathrm{C} 39$	$136.2(2)$	$\mathrm{C} 1-\mathrm{C} 24-\mathrm{N} 5 \cdots \mathrm{~N} 6$	$169.8(4)$
$\mathrm{C} 1-\mathrm{C} 35-\mathrm{N} 7-\mathrm{C} 36$	$-104.0(3)$	$\mathrm{C} 1-\mathrm{C} 35-\mathrm{N} 7 \cdots \mathrm{~N} 8$	$-167.1(3)$
$\mathrm{C} 1-\mathrm{C} 24-\mathrm{N} 5-\mathrm{C} 28$	$107.7(3)$	$\mathrm{C} 4 \cdots \mathrm{C} 5 \cdots \mathrm{C} 8 \cdots \mathrm{C} 12$	$150.4(2)$
$\mathrm{C} 1-\mathrm{C} 24-\mathrm{N} 5-\mathrm{C} 25$	$-128.7(2)$	$\mathrm{C} 4 \cdots \mathrm{C} 5 \cdots \mathrm{C} 12 \cdots \mathrm{C} 8$	$-22.92(17)$
$\mathrm{C} 1-\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 17$	$-137.9(2)$	$\mathrm{C} 15 \cdots \mathrm{C} 16 \cdots \mathrm{C} 19 \cdots \mathrm{C} 23$	$-167.0(2)$
$\mathrm{C} 1-\mathrm{C} 13-\mathrm{N} 3-\mathrm{C} 14$	$102.1(3)$	$\mathrm{C} 15 \cdots \mathrm{C} 16 \cdots \mathrm{C} 23 \cdots \mathrm{C} 19$	$10.03(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$130.1(2)$	$\mathrm{C} 26 \cdots \mathrm{C} 27 \cdots \mathrm{C} 30 \cdots \mathrm{C} 34$	$-142.28(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$-109.0(2)$	$\mathrm{C} 26 \cdots \mathrm{C} 27 \cdots \mathrm{C} 34 \cdots \mathrm{C} 30$	$29.15(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1 \cdots \mathrm{~N} 2$	$-172.5(3)$	$\mathrm{C} 37 \cdots \mathrm{C} 38 \cdots \mathrm{C} 41 \cdots \mathrm{C} 45$	$160.69(19)$
$\mathrm{C} 1-\mathrm{C} 13-\mathrm{N} 3 \cdots \mathrm{~N} 4$	$165.7(3)$	$\mathrm{C} 37 \cdots \mathrm{C} 38 \cdots \mathrm{C} 45 \cdots \mathrm{C} 41$	$-14.84(15)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C34-H34 \cdots C21 $1^{\text {ii }}$	0.93	2.63	$3.471(6)$	151
C39-H39A \cdots C40 $0^{\text {iii }}$	0.97	2.69	$3.622(4)$	162
Syin				

Symmetry codes: (ii) $1+x, y-1, z$; (iii) $-x,-y, 1-z$.
H atoms were included using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent C atom.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

organic papers

The authors gratefully acknowledge financial support from the Ministry of Education, China and through project No. 60171008 supported by NSFC.

References

Bats, J. W., Walter, M. \& Noe, C. R. (2003). Acta Cryst. E59, o72-o74. Brock, C. P. \& Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Garrard, W. N. C. \& Partridge, A. C. (1993). J. Electroanal. Chem. 360, 139159.

Kuleshova, L. N., Antipin, M. Y. \& Komkov, I. V. (2003). J. Mol. Struct. 647, 41-51.
Lehmler, H. J., Robertson, L. W., Parkin, S. \& Brock, C. P. (2002). Acta Cryst. B58, 140-147.
Lu, Y.-X., Liu, C.-M., Zou, Z.-G., Xu, W., Wang, J.-M., Chen, M.-Q. \& Huang, Y.-M. (2003). Acta Cryst. E59, o1960-o1961.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

